A New Clustering Algorithm Based On Cluster Validity Indices
نویسندگان
چکیده
This paper addresses two most important issues in cluster analysis. The first issue pertains to the problem of deciding if two objects can be included in the same cluster. We propose a new similarity decision methodology which involves the idea of cluster validity index. The proposed methodology replaces a qualitative cluster recognition process with a quantitative comparison-based decision process. It obviates the need for complex parameters, a primary requirement in most clustering algorithms. It plays a key role in our new validation-based clustering algorithm, which includes a random clustering part and a complete clustering part. The second issue refers to the problem of determining the optimal number of clusters. The algorithm addresses this question through complete clustering which also utilizes the proposed similarity decision methodology. Experimental results are also provided to demonstrate the effectiveness and efficiency of the proposed algorithm.
منابع مشابه
انتخاب اعضای ترکیب در خوشهبندی ترکیبی با استفاده از رأیگیری
Clustering is the process of division of a dataset into subsets that are called clusters, so that objects within a cluster are similar to each other and different from objects of the other clusters. So far, a lot of algorithms in different approaches have been created for the clustering. An effective choice (can combine) two or more of these algorithms for solving the clustering problem. Ensemb...
متن کاملDevelopment of An External Cluster Validity Index using Probabilistic Approach and Min-max Distance
Validating a given clustering result is a very challenging task in real world. So for this purpose, several cluster validity indices have been developed in the literature. Cluster validity indices are divided into two main categories: external and internal. External cluster validity indices rely on some supervised information available and internal validity indices utilize the intrinsic structu...
متن کاملImproving Cluster Method Quality by Validity Indices
Clustering attempts to discover significant groups present in a data set. It is an unsupervised process. It is difficult to define when a clustering result is acceptable. Thus, several clustering validity indices are developed to evaluate the quality of clustering algorithms results. In this paper, we propose to improve the quality of a clustering algorithm called ”CLUSTER” by using a validity ...
متن کاملA New Validity Measure for Heuristic Possibilistic Clustering
A heuristic approach to possibilistic clustering is the effective tool for the data analysis. The approach is based on the concept of allotment among fuzzy clusters. To establish the number of clusters in a data set, a validity measure is proposed in this paper. An illustrative example of application of the proposed validity measure to the Anderson’s Iris data is given. A comparison of the vali...
متن کاملAn Adaptive LEACH-based Clustering Algorithm for Wireless Sensor Networks
LEACH is the most popular clastering algorithm in Wireless Sensor Networks (WSNs). However, it has two main drawbacks, including random selection of cluster heads, and direct communication of cluster heads with the sink. This paper aims to introduce a new centralized cluster-based routing protocol named LEACH-AEC (LEACH with Adaptive Energy Consumption), which guarantees to generate balanced cl...
متن کاملBiological Cluster Validity Indices Based on the Gene Ontology
With the invention of biotechnological high throughput methods like DNA microarrays and the analysis of the resulting huge amounts of biological data, clustering algorithms gain new popularity. In practice the question arises, which clustering algorithm as well as which parameter set generates the most promising results. Little work is addressed to the question of evaluating and comparing the c...
متن کامل